Jornada

Eficiencia Energética



Gestión de la energía en plantas industriales



Centro Argentino de Ingenieros

# "Mejora de Power Quality & Ahorro de Energía en plantas del parque industrial Pilar"

**Casos exitosos** 

Ing. Fernando Rosa

# Caso 1: Utilizando equipo Marca Electroflow (EEUU) Proyecto realizado en el año 2006



# Objetivos del Proyecto:

- ✓ La empresa en la cual se instaló el sistema, tenía un programa de inversiones corporativo para sus plantas alrededor del mundo orientada a optimizar el uso y el consumo energético.
- ✓ Luego de estudiar diferentes opciones, se definió por la solución que describimos a continuación



# Qué es??

Es un Dispositivo industrial, con componentes eléctricos y electrónicos destinado a optimizar la calidad de la energía eléctrica, permitiendo ahorros económicos en los desembolsos por éste rubro.



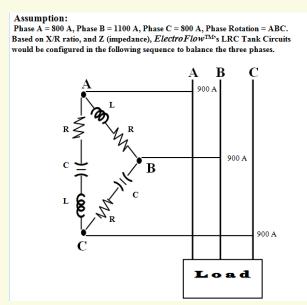
### En qué consiste?

- ✓ Es un sistema integrado en un gabinete, el cual monitorea V, I, Ar y F.P., tomando entre 3,840-15,360 muestras por segundo.
- ✓ Contiene además circuitos multifase RLC variables, seleccionados según los parámetros de diseño.
- ✓ Básicamente es un compensador en tiempo real, que ante una perturbación reacciona corrigiendo y restituyendo tanto como sea posible las condiciones deseadas.
- ✓ Está provisto con una alarma de Auto Diagnóstico (SDF) que identifica el estado de cada fase.
- ✓ Se conecta en los alimentadores de planta, en paralelo.
- ✓ El equipo está preparado para desempeñar las siguientes funciones:

# Mejora del Voltaje y Estabilidad Función Standard # 1

# En general, el uso de los UPS, y estabilizadores de voltaje provocan que:

- Exista pérdida de energía
- Se deban conectar en serie
- Se generen armónicas
- Tengan tamaños fijos y limitados y no sean expandibles
- Son voluminosos y caros.


#### La optimización obtenida con este equipo:

- Mejora el voltaje y la estabilidad en tiempo real
- Ahorra energía (KW, KVA, KWH),
- Se conecta en paralelo al sistema existente y es seguro ante fallas.
- Es modular y apropiado para expandirse según el aumento de carga de la empresa.

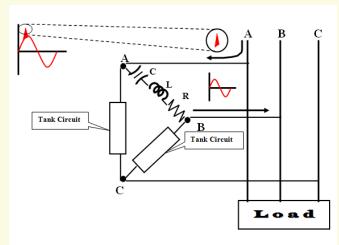


## Balanceo trifásico Función Standard #2

- ✓ Esta solución permitió:
  - ✓ Balanceo de las tres fases en tiempo real utilizando el índice X/R,
  - ✓ Ahorro de energía (KW, KVA, KWH).



## Filtro de Picos y Transitorios Funcion Standard # 3


#### Diferentes dispositivos como MOV'S y Diodos Zener son utilizados como supresores de picos pero:

- ✓ Poseen una capacidad limitada de energía a disipar en Joules/seg.
- ✓ Envían la energía al neutro y a tierra y ,
- No tienen indicador alguno del estado del equipo.

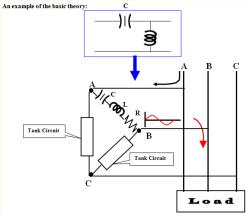
#### Esta Solución permitió:

- Respuesta rápida e inteligente a los picos y transitorios.
- ✓ Ahorrar energía ,
- Proporciona un indicador de su estado, usando SDF (Sistema De Auto Diagnostico).





# Filtros de banda ancha para armónicas Función Standard #4


# Existen diferentes tipos de Filtros activos que provocan:

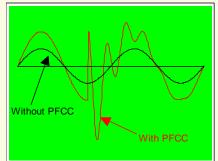
- ✓ Se pierda energía
- ✓ Aumente el riesgo del sistema eléctrico porque deben conectarse en serie
- Se generen armónicas (a través de la inyección),
- ✓ Tienen tamaños fijos y limitados
- ✓ Son voluminosos y caros.

#### La mejora obtenida permitió:

- Disponer un Filtro de banda ancha para armónicas
- ✓ Disipación de la energía asociada al filtrado
- Sistema modular y expandible previendo aumento de la capacidad de la planta.



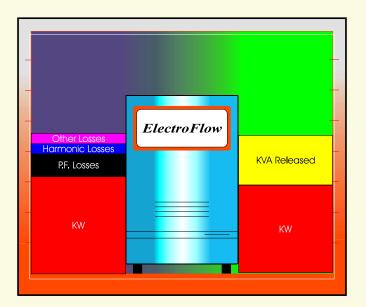



# Mejora del Factor de Potencia Función Standard # 5

#### Diferentes efectos adversos provocados por los PFCC y los bancos de capacitores:

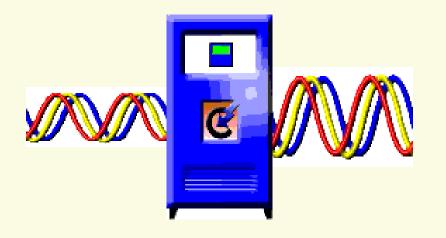
- ✓ Sobre voltajes, suministro irregular de voltaje.
- ✓ Susceptibilidad a los picos y transitorios, impedancia (Z) reducida.
- ✓ Falla de las celdas de los capacitores.
- ✓ Ningún monitoreo/ protección ante una falla de las celdas.
- ✓ Amplifican las armónicas.
- Resonancia y temperatura,
- ✓ Oscilación durante la carga del condensador.
- ✓ Factor de Potencia adelantado en condiciones de baja carga o pérdida de carga.
- ✓ Aumento del torque y KW, basados en porcentaje de carga.

#### Con esta solución se proporcionó:


- ✓ Factor de Potencia entre 95% 100%
- ✓ Sistema de Auto Diagnóstico (SDF).



## Aumento de la Capacidad de KVA Function Standard #6


#### En este rubro logramos:

- ✓ Mantener equilibrada la capacidad en KVA.
- ✓ Sin efecto colateral adverso.
- Mayor Ampacidad con la misma infraestructura
- ✓ Excelente eficiencia comparativa.



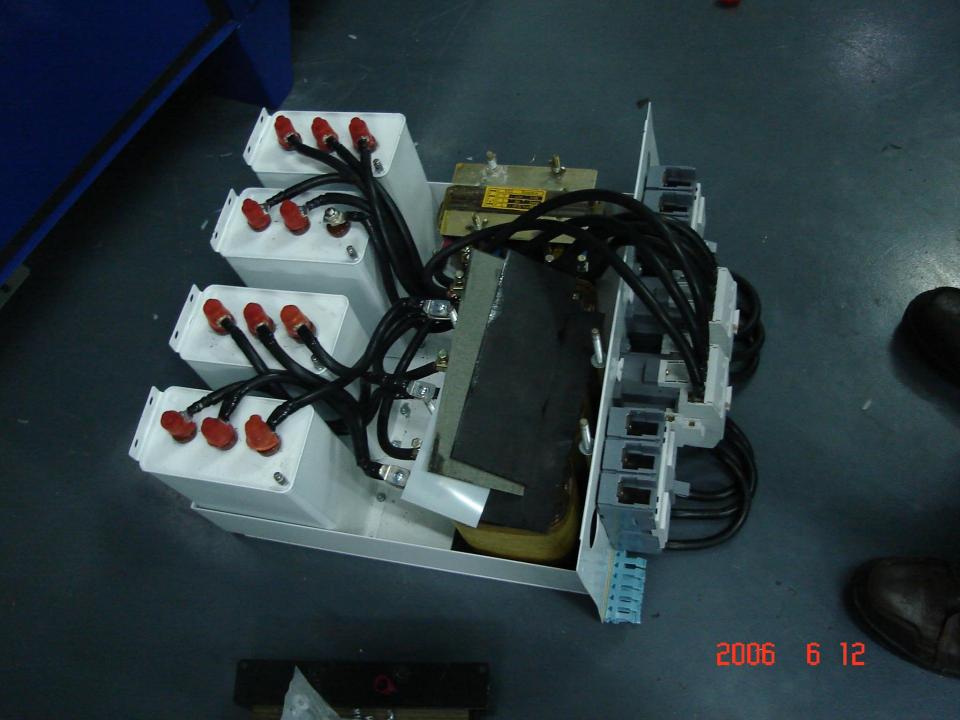
# Electroflow tiene funciones opcionales (No se instalaron en este proyecto)

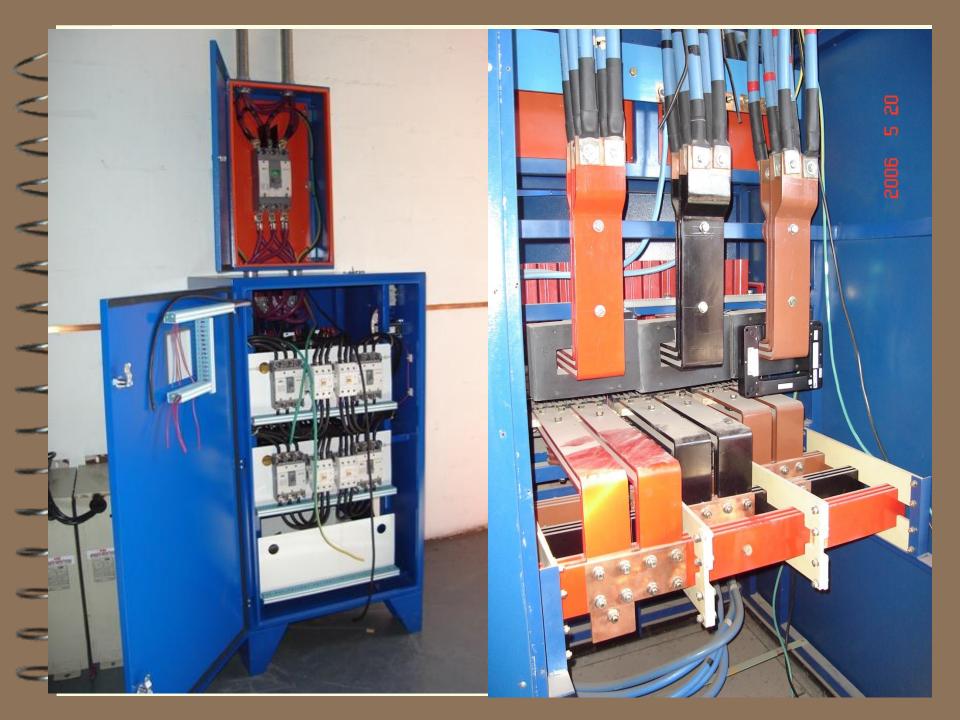
- ✓ Protección contra Bajadas de Tensión ("BrownOuts")
- ✓ Protección contra microfallas de alimentación (1 seg)
- ✓ Filtros específicos para armónicas
- ✓ Otras



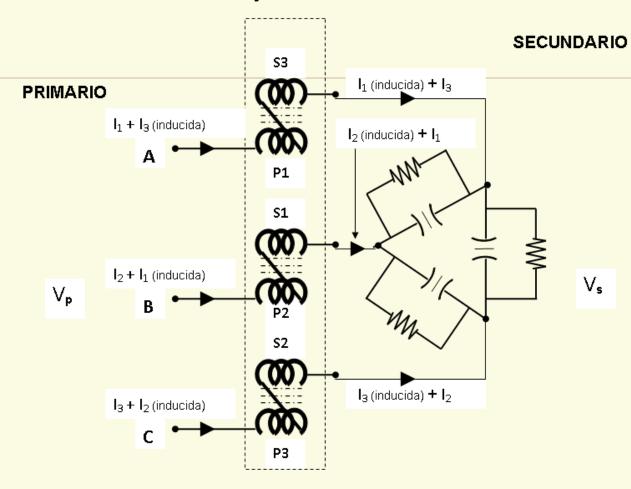
#### Beneficios de esta aplicación **Ahorros** Power Quality 1 - Reducción de la demanda KW 1 - Mejora el voltaje 2 - Reducción del consumo KWH 2 - Balancea las tres fases 3 - Eliminación penalizaciones 3 - Filtro de picos y transitorios 4 - Reducción factura eléctrica 4 - Filtro de armónicas 5 - Reducción paros y 5 - Mejora el Factor de Potencia mantenimiento Mejoramiento de Entre Power Quality 10 y 12% Ahorro Reducción de paros en la factura y de Mantenimiento Proyecto Satisfactorio

# Resumen de Parámetros obtenidos en las pruebas de funcionamiento:


| Electroflow Evaluation<br>Apr 23, 2007 |               | Electroflow Installation Jun 06 |                     |        |        |        |                    |        |        |        |        |            | Oct 06 |                    |
|----------------------------------------|---------------|---------------------------------|---------------------|--------|--------|--------|--------------------|--------|--------|--------|--------|------------|--------|--------------------|
|                                        |               |                                 | Without Electroflow |        |        |        |                    |        |        |        | With   | Electroflo | ow     |                    |
|                                        |               | Jan 06                          | Feb 06              | Mar 06 | Apr 06 | May 06 | Avg Jan-May        | Jun 06 | Jul 06 | Aug 06 | Sep 06 | Oct 06     | Nov 06 | Avg Jul-Nov        |
| Energy Consumption                     | MWh           | 1740.9                          | 1385.8              | 1351.7 | 1490.6 | 1781.4 | 1550.1             | 1473.5 | 1796.3 | 1718.3 | 1932.0 | 2295.6     | 2276.7 | 2003.8             |
| Production Preforms                    | M Pref        | 49.38                           | 35.40               | 33.20  | 39.71  | 50.83  | 41.7               | 38.47  | 50.09  | 48.69  | 62.31  | 68.78      | 64.32  | 58.8               |
| Production Bottles                     | M Bottles     | 0.00                            | 0.00                | 0.00   | 0.00   | 0.00   | 0.0                | 0.00   | 0.00   | 0.00   | 0.00   | 2.00       | 3.15   | 1.03               |
| Total Production                       | M Units       | 49.38                           | 35.40               | 33.20  | 39.71  | 50.83  | 41.70              | 38.47  | 50.09  | 48.69  | 62.31  | 70.78      | 67.47  | 5 <del>9.8</del> 7 |
|                                        | MWh / M Units | 35.25                           | 39.15               | 40.71  | 37.54  | 35.05  | (37.54)            | 38.30  | 35.86  | 35.29  | 31.01  | 32.43      | 33.74  | (33.67)            |
| Unprogram Mach                         | #             | 3.90                            | 5.01                | 5.38   | 4.60   | 2.56   | 4.29               | 3.79   | 2.57   | 3.11   | 0.82   | 0.15       | 0.26   | 1.38               |
| Avg. Preform weight                    | gr            | 34.43                           | 36.47               | 32.09  | 37.77  | 41.99  | 36.55              | 40.13  | 38.04  | 41.52  | 38.76  | 37.76      | 36.94  | 38.60              |
| Resin Consumption                      | tn            | 1700.2                          | 1291.0              | 1065.5 | 1500.0 | 2134.2 | <del>1538.</del> 2 | 1543.9 | 1905.3 | 2021.5 | 2415.1 | 2597.2     | 2376.2 | 2263.1             |
|                                        | MWh / tn      | 1.024                           | 1.073               | 1.269  | 0.994  | 0.835  | 1.039              | 0.954  | 0.943  | 0.850  | 0.800  | 0.884      | 0.958  | 0.887              |


| Difference |       |  |  |  |  |  |
|------------|-------|--|--|--|--|--|
| MWh / M    | %     |  |  |  |  |  |
| 3.87       | 10.3% |  |  |  |  |  |
|            |       |  |  |  |  |  |
|            |       |  |  |  |  |  |
| MWh/ tn    | %     |  |  |  |  |  |
| 0.15       | 14.6% |  |  |  |  |  |

| Recapitulation of the Power Quali | y results stemming from the data | collected is presented herin: |
|-----------------------------------|----------------------------------|-------------------------------|
|-----------------------------------|----------------------------------|-------------------------------|


|                                          | Electroflow | "OFF"  | Electroflo | w "ON"  |                 |
|------------------------------------------|-------------|--------|------------|---------|-----------------|
|                                          | Min         | Max    | Min        | Max     | Electroflow     |
| Voltage (Phase A) (V)                    | 380         | 386    | 382        | 387     | Technologies    |
| Voltage (Phase B) (V)                    | 379         | 384    | 380        | 386     |                 |
| Voltage (Phase C) (V)                    | 380         | 386    | 382        | 387     |                 |
| Current (Phase A) (A)                    | 902         | 1317   | 720        | 1089    |                 |
| Current (Phase B) (A)                    | 834         | 1245   | 692        | 1042    |                 |
| Current (Phase C) (A)                    | 861         | 1292   | 710        | 1072    |                 |
| Power Factor (Phase A) (%)               | 0.87        | 0.95   | 0.92       | 0.98    |                 |
| Power Factor (Phase B) (%)               | 0.88        | 0.95   | 0.91       | 0.98    |                 |
| Power Factor (Phase C) (%)               | 0.85        | 0.93   | 0.90       | 0.97    |                 |
| Average Power Factor (%)                 | 0.86        | 0.94   | 0.91       | 0.98    |                 |
| Displaced Power Factor                   | 0.92        |        |            | 0.95    |                 |
| True Power Factor                        | 0.93        |        |            | 0.95    |                 |
| Max Real Power (KW)                      | 7           | 55     |            | 694     | 8.1% Reduction  |
| Min. Real Power (KW)                     | 5           | 13     |            | 445     | 13.3% Reduction |
| Usage (KWH)                              | 34          | 15.984 | 3          | 313.407 | 9.4% Savings    |
| Current Harmonics<br>I THD (Phase A) (%) | 2.62        | 4.2    | 1.17       | 2.92    |                 |
| I THD (Phase B) (%)                      | 2.14        | 3.97   | 1.04       | 2.98    |                 |
| I THD (Phase C) (%)                      | 2.27        | 4.56   | 1.12       | 2.96    |                 |







#### Transformador de Voltaje constante



 $V_p$ : Voltaje primario

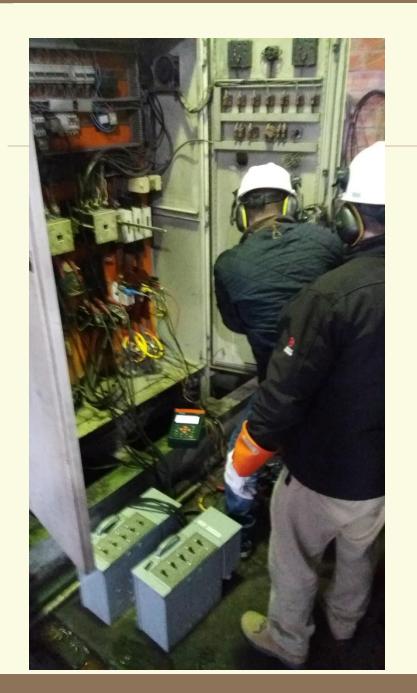
V<sub>s</sub>: Voltaje secundario

(1)  $V_p + \Delta V_p = V_s - \Delta V_p$ 

(2)  $V_n - \Delta V_n = V_s + \Delta V_n$ 

Bobinas de compensación

**S1** 


~~

# Caso 2: Pruebas con equipo Marca Kvar (Chile) 2016



# Que es?

- ✓ Es un equipo que permite ahorrar entre 6 y 12% en las facturas de energía eléctrica
- ✓ Permite un aumento de la eficiencia mejorando el FP significativamente





#### Anexo N° 1 Mediciones equipos KVAR

|   | WORK SHEET        |      |       |           |              |         |             |           |          |            |  |  |  |
|---|-------------------|------|-------|-----------|--------------|---------|-------------|-----------|----------|------------|--|--|--|
|   | DATE:             | 25 c | de ju | lio 2016  |              |         | PRICE OF    |           |          |            |  |  |  |
|   | NAME OF COMPANY:  | Em   | bote  | lladora S | ecco         |         | SHIPPING    |           |          |            |  |  |  |
|   | ADDRESS:          |      |       |           |              | Quoted  | TAXES: %=   |           |          |            |  |  |  |
|   | CITY/ST/ZIP:      | Bue  | nos   | Aires     |              | Savings | INITIAL FIE |           |          |            |  |  |  |
|   | PHONE #:          |      |       |           |              | 4,20%   | INSTALLAT   |           |          |            |  |  |  |
|   | ATTENTION:        | Sr.  |       |           |              |         | TOTALS:     |           | \$42.555 |            |  |  |  |
|   |                   |      |       |           |              |         |             |           |          |            |  |  |  |
|   | Cost Per kWh      | kW   | atts  | SAVED =   | 31,15        | MONTHLY | SAVINGS =   | \$2.242,5 | BEP* =   | 19,0       |  |  |  |
|   | \$0,1200          |      |       | INITIAL   | INITIAL      | kWatts  | RUN TIME    | kWHrs SAV | DAYS PER | OPTIMIZED  |  |  |  |
| # | ITEM/EQUIPMENT    | PH   | ٧     | AMPS      | Power Factor | SAVED   | PER DAY     | PER DAY   | MONTH    | SAV PER MO |  |  |  |
| 1 | Compresor ABC     | 3    | 385   | 258,0     | 0,89         | 6,43    | 20,0        | 128,62    | 30,0     | \$463,03   |  |  |  |
| 2 | Compresor AF18    | 3    | 384   | 322,5     | 0,92         | 8,29    | 20,0        | 165,76    | 30,0     | \$596,75   |  |  |  |
| 3 | Compresor AF22    | 3    | 383   | 423,0     | 0,85         | 10,02   | 20,0        | 200,35    | 30,0     | \$721,27   |  |  |  |
| 4 |                   |      |       |           |              |         | 20,0        |           | 30,0     |            |  |  |  |
| 5 | Compresor ASTEMEC | 3    | 388   | 246,8     | 0,92         | 6,41    | 20,0        | 128,18    | 30,0     | \$461,43   |  |  |  |

|   | Cost Per kWh      |       |       |         |           |           |           |           |      |      |           |    |
|---|-------------------|-------|-------|---------|-----------|-----------|-----------|-----------|------|------|-----------|----|
|   | \$0,1200          |       |       | INITIAL | OPTIMIZED | Amperage  | INITIAL   | OPTIMIZED | HRS  | DAYS | INITIAL   | US |
| # | ITEM/EQUIPMENT    | PHASE | VOLTS | AMPS    | AMPS      | Reduction | PF as .XX | PF as .XX | /DAY | / MO | kWh/ MO   | NO |
| 1 | Compresor ABC     | 3     | 385   | 258,0   | 236,3     | 8,4%      | 0,89      | 0,95      | 20,0 | 30,0 | 91.871,8  | 3  |
| 2 | Compresor AF18    | 3     | 384   | 322,5   | 298,0     | 7,6%      | 0,92      | 0,96      | 20,0 | 30,0 | 118.402,4 | 3  |
| 3 | Compresor AF22    | 3     | 383   | 423,0   | 373,0     | 11,8%     | 0,85      | 0,93      | 20,0 | 30,0 | 143.110,0 | 3  |
| 4 |                   |       |       |         |           |           |           |           | 20,0 | 30,0 | #¡VALOR!  | 3  |
| 5 | Compresor ASTEMEC | 3     | 388   | 246,8   | 222,0     | 10,0%     | 0,92      | 0,96      | 20,0 | 30,0 | 91.553,8  | 3  |

|   | Cost Per kWh   |    |      |      |      |      |      |      |          |          |      |       |      |    |
|---|----------------|----|------|------|------|------|------|------|----------|----------|------|-------|------|----|
|   | \$0,1200       |    | INIT | OPTI | INIT | OPTI | INIT | OPTI | INIT     | OPTI     | KVAR | HRS   | DAYS | US |
| # | ITEM/EQUIPMENT | РН | ٧    | ٧    | kW   | kW   | AMPS | AMPS | PF (.XX) | PF (.XX) | AMPS | / DAY | / MO | NO |
|   |                |    |      |      |      |      |      |      |          |          |      |       |      |    |



Sin KVAR



Con KVAR





Gracias!

**Preguntas?**